

Chestnut Chat GWAS 101

David Kainer

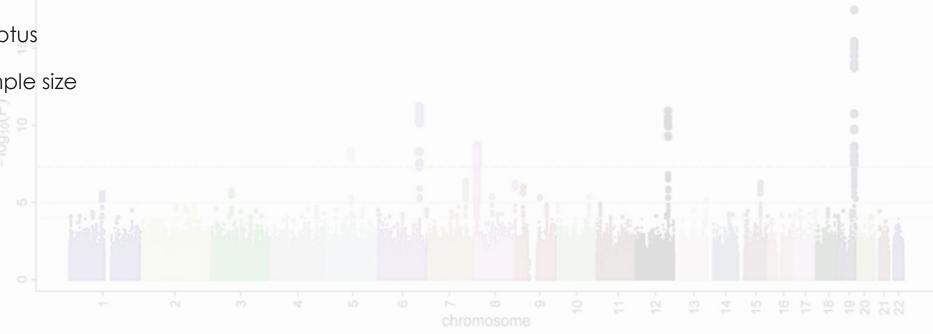
Computational Biology, Biosciences Division, ORNL

kainerd@ornl.gov

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

GWAS 101

- 1. Overview of GWAS
- 2. What kind of traits can be analyzed?
- 3. Phenotypes and Genotypes
- 4. The three steps of GWAS
- 5. A case study in Eucalyptus
- 6. The importance of sample size
- 7. Population Structure
- 8. Interpreting results



GWAS according to the NIH

A genome-wide association study (GWAS) is an approach used in genetics research to associate specific genetic variations with particular diseases.

The method involves scanning the genomes from many different people and looking for genetic markers that can be used to predict the presence of a disease. Once such genetic markers are identified, they can be used to understand how genes contribute to the disease and develop better prevention and treatment strategies.

GWAS according to me

Phenotype = Genotype + Environment

GWAS for pathogen resistance in trees

Poplar

Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant-pathogen interactions in a tree

Wellington Muchero^a, Kelsey L. Sondreli^b, Jin-Gui Chen^a, Breeanna R. Urbanowicz^c, Jin Zhang^a, Vasanth Singan^d, Yongil Yang^a, Robert S. Brueggeman^e, Juan Franco-Coronado^e, Nivi Abraham^e, Jeong-Yeh Yang^c, Kelley W. Moremen^c, Alexandra J. Weisberg^b, Jeff H. Chang^b, Erika Lindquist^d, Kerrie Barry^d, Priya Ranjan^a, Sara Jawdy^a, Jeremy Schmutz^{d,f}, Gerald A. Tuskan^{a,d}, and Jared M. LeBoldus^{b,e,g,1}

^aBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; ^bDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; ^CComplex Carbohydrate Research Center, University of Georgia, Athens, GA 30602; ^dJoint Genome Institute, US Department of Energy, Walnut Creek, CA 94598; ^eDepartment of Plant Pathology, North Dakota State University, Fargo, ND 58102; ^fHudsonAlpha Institute for Biotechnology, Huntsville, AL 35806; and ^gForest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331

Ash

ARTICLES https://doi.org/10.1038/s41559-019-1036-6 ecology & evolution

Genomic basis of European ash tree resistance to ash dieback fungus

Jonathan J. Stocks^{1,2}, Carey L. Metheringham^{(3)1,2}, William J. Plumb^{1,2,3}, Steve J. Lee⁴, Laura J. Kelly^{(3)1,2}, Richard A. Nichols¹ and Richard J. A. Buggs^{(3)1,2}*

Eucalyptus

A Genome-Wide Association Study for Resistance to the Insect Pest *Leptocybe invasa* in *Eucalyptus grandis* Reveals Genomic Regions and Positional Candidate Defense Genes

Lorraine Mhoswa¹, Marja M. O'Neill¹, Makobatjatji M. Mphahlele^{1,2}, Caryn N. Oates¹, Kitt G. Payn³, Bernard Slippers¹, Alexander A. Myburg¹ and Sanushka Naidoo ¹/_{*}

Beech

RESEARCH ARTICLE

Open Access

Genome-wide association study identifies a major gene for beech bark disease resistance in American beech (*Fagus grandifolia* Ehrh.)

Irina Ćalić¹, Jennifer Koch², David Carey², Charles Addo-Quaye^{3,4}, John E. Carlson⁵ and David B. Neale^{1*}

Eucalyptus

New Phytologist

Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in *Eucalyptus*

Rafael Tassinari Resende¹, Marcos Deon Vilela Resende^{1,2}, Fabyano Fonseca Silva³, Camila Ferreira Azevedo¹, Elizabete Keiko Takahashi⁴, Orzenil Bonfim Silva-Junior^{5,6} and Dario Grattapaglia^{5,6}

GWAS for wood properties

Phenotype	Species	Population	Sample size	No. of markers	Method	Reference
Growth and wood properties	Eucalyptus globulus	Families and bulk collections	303	7,680 [Diversity Array Technology markers (DArT)]	General linear model (GLM) and unified mixed model (UMM)	Cappa et al., 2013
Wood density, stiffness, microfibril angle, and ring width	Picea glauca	Open-pollinated families	1694	7434 (SNPs)	Mixed linear model (MLM)	Lamara et al., 2016
16 wood chemistry/ ultrastructure traits	Populus trichocarpa	Unrelated individuals	334	29,233 (SNPs)	GLM	Porth et al., 2013
Lignin percentage, Lignin S:G ratio, 5-carbon sugars, and 6-carbon sugars	Populus deltoides	Unrelated individuals	391	334,679 (consensus SNPs), 185,526 (Common SNPs), 76,804 (functional SNPs)	Single-variant and multiple-variant associations on GLM	Fahrenkrog et al., 2017
Basic wood density (BWD), bleached oulp, pulp yield (SPY), and pulp bleaching content	Eucalyptus grandis × Eucalyptus urophylla	Hybrid breeding population	768	24 806 (SNPs)	GWAS and regional heritability mapping	Resende et al., 2017
17 wood-quality traits	Norway spruce	Mother trees	517	178101 (SNPs)	Multilocus LASSO penalized regression	Baison et al., 2018
Seven wood properties	Populus tomentosa	Unrelated individuals	435	5,482 (InDels)	MLM and Kempthorne model	Gong et al., 2017

Diversity Array Technology (DArT) markers.

Du, Qingzhang, et al. "Genome-wide association studies to improve wood properties: challenges and prospects." *Frontiers in Plant Science* 9 (2018): 1912.

You can GWAS almost anything you can measure

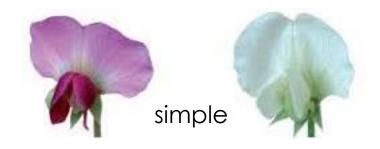
Typical GWAS traits in trees

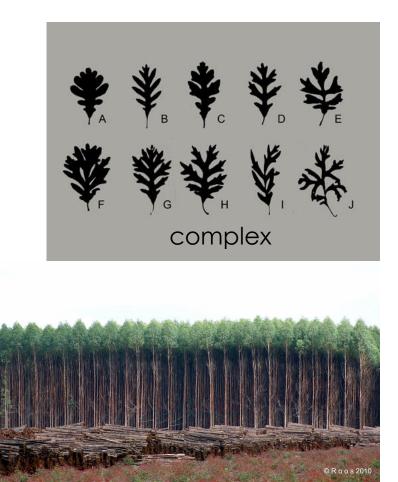
- Growth: Height, DBH, crown architecture, branching, leaf shape
- Wood properties: lignin, sugars, microfibril angle
- Metabolic: primary or secondary metabolite abundances
- Pathogens: Fungal/bacterial abundances
- Resistance: inoculation outcomes
- Adaptive: flowering time, leaf senescence
- Sustainability: water use efficiency, nitrogen use
- Gene Expression: Gene Transcript (RNAseq) abundances

Phenotypic variation

- Without variation there is little to explore
- Variation is the source material
- Is the phenotypic variation due to:
 - Genetic variation?
 - Environmental variation?
 - Both?

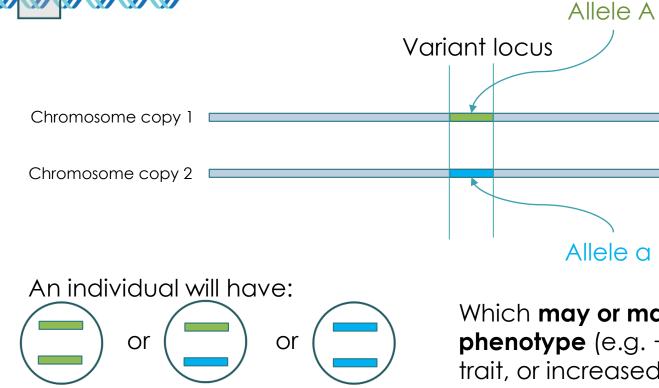
Phenotype = Genotype + Environment





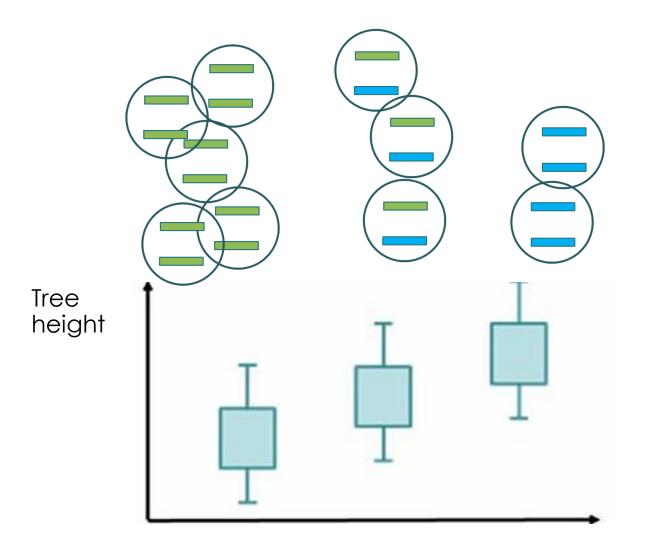
genetic variation

Diploid "chromosome"

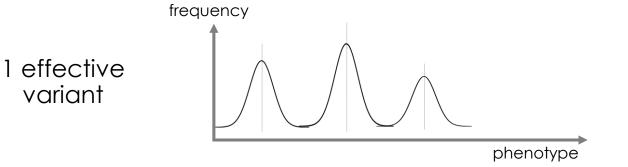


Which **may or may not affect their phenotype** (e.g. +/- for quantitative trait, or increased resistance to a disease)

genetic variation in a population

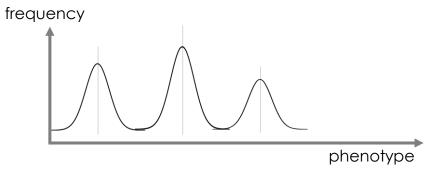


Population Genetic and Phenotypic variation

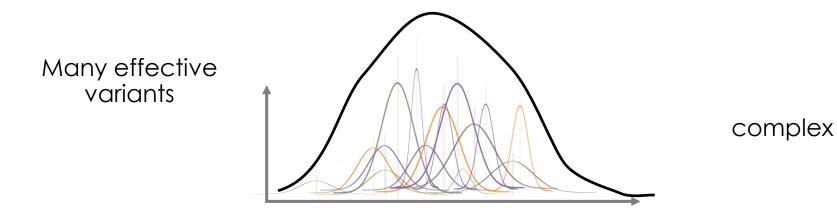


simple

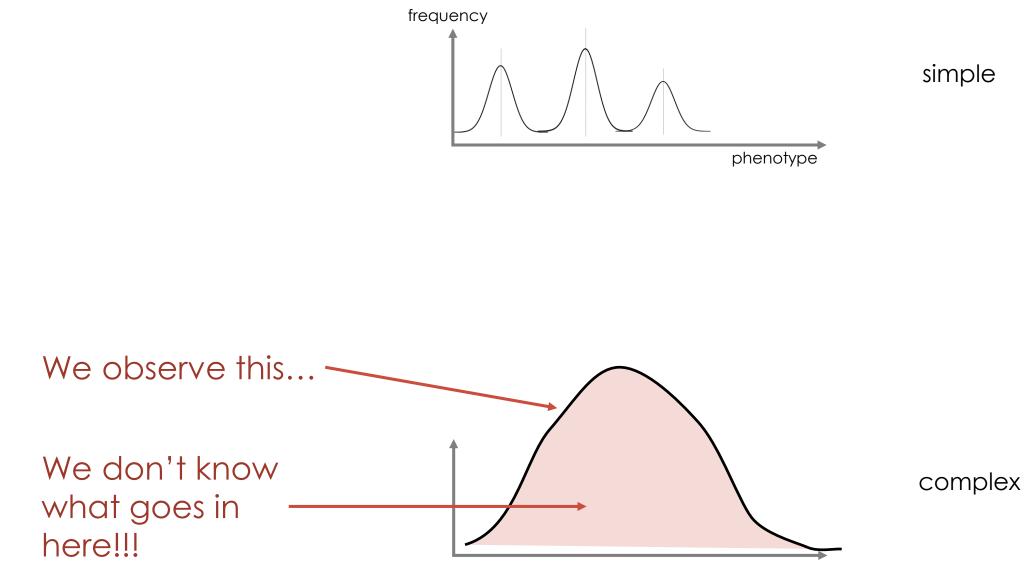
Population Genetic and Phenotypic variation



simple



Population Genetic and Phenotypic variation

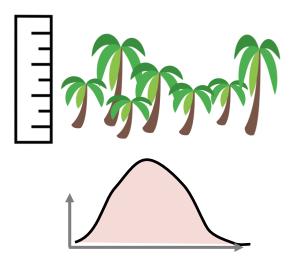


Genome-wide variation

Across the entire genome, there may be millions of variant locations (e.g. SNPs) that have alleles in a population.

Q: Which ones have an effect on a trait ? A: GWAS

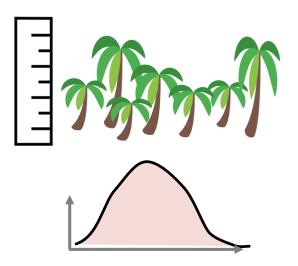
How a GWAS works: quantitative trait

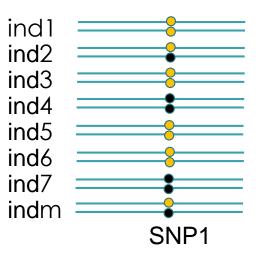


Take a population of mostly <u>un-related</u> individuals. Measure a phenotype that varies (e.g. Height)

How a GWAS works: quantitative trait

2

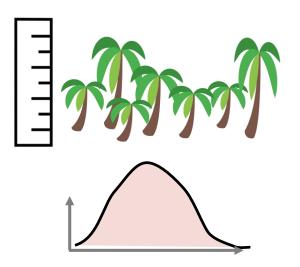


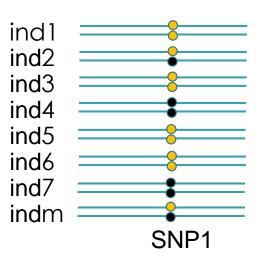


Take a population of mostly <u>un-related</u> individuals. Measure a phenotype that varies (e.g. Height)

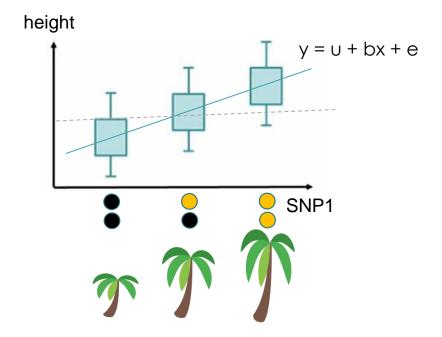
- Sequence the DNA of each of them. Find positions in the
- genome where the individuals vary (e.g. SNPs)

How a GWAS works: quantitative trait





Take a population of mostly <u>un-related</u> individuals. Measure a phenotype that varies (e.g. Height) 2 Sequence the DNA of each of them. Find positions in the genome where the individuals vary (e.g. SNPs)



3 Test each SNP to see if the alleles significantly correlate with the phenotypic variation. E.g. Does having more copies of the • allele equate to a significant linear increase in height?

How a GWAS works: binary trait

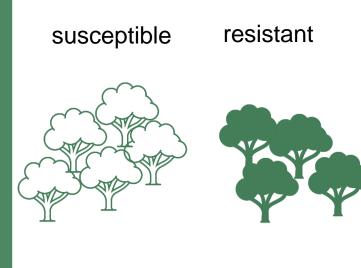
ind1

ind2

ind3

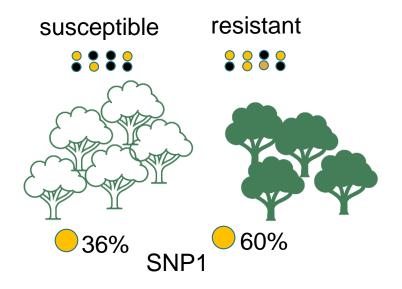
ind4 ind5

ind6 ind7 indm



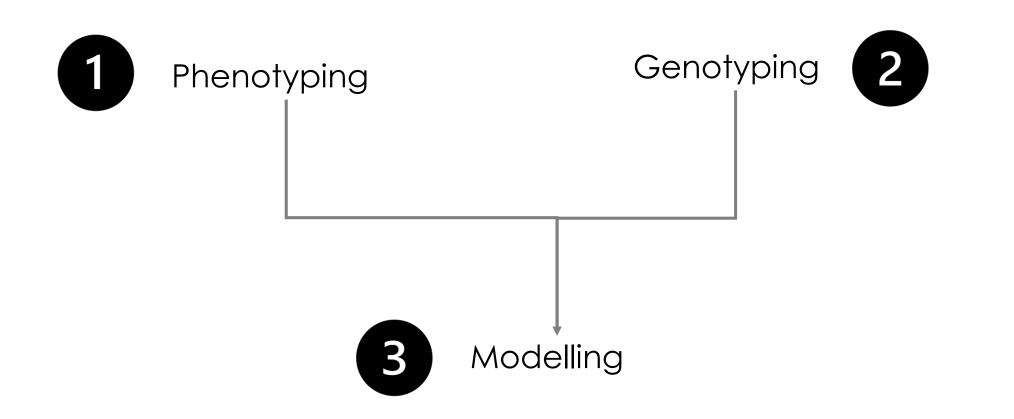
Take a population of mostly <u>un-related</u> individuals. Split them into two groups (e.g. resistant / susceptible) Sequence the DNA of each of them. Find positions in the genome where the individuals vary (e.g. SNPs)

SNP1

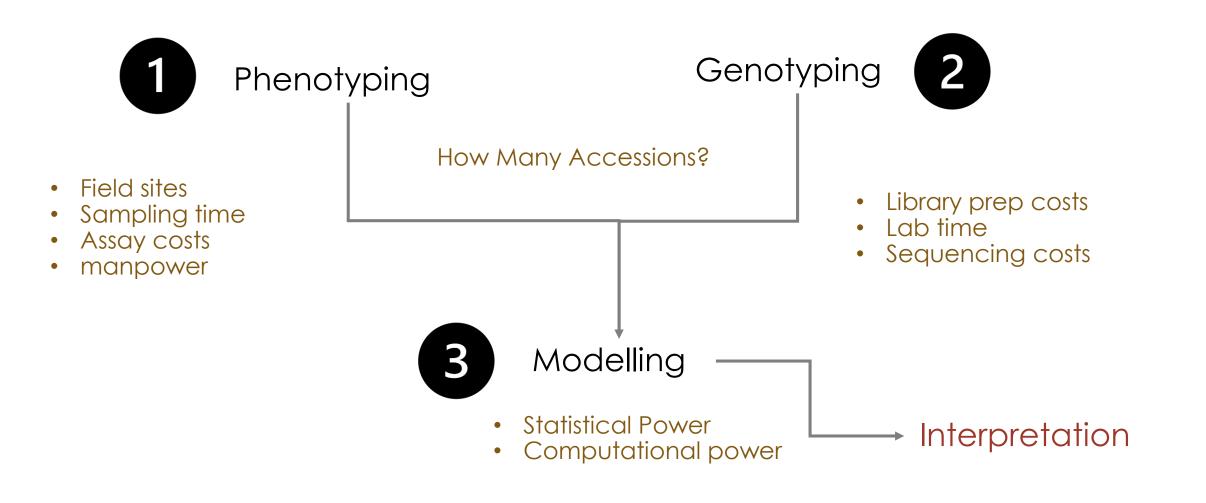


Test each SNP to see if its alleles have significantly different frequency in one group compared to the other

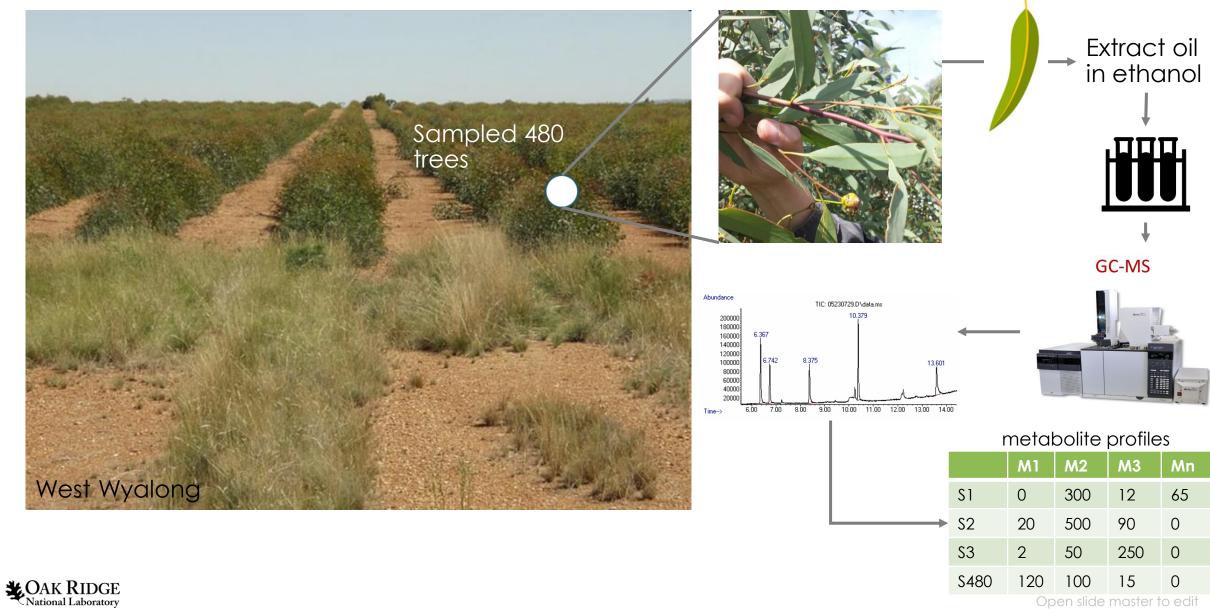
Three main steps for GWAS

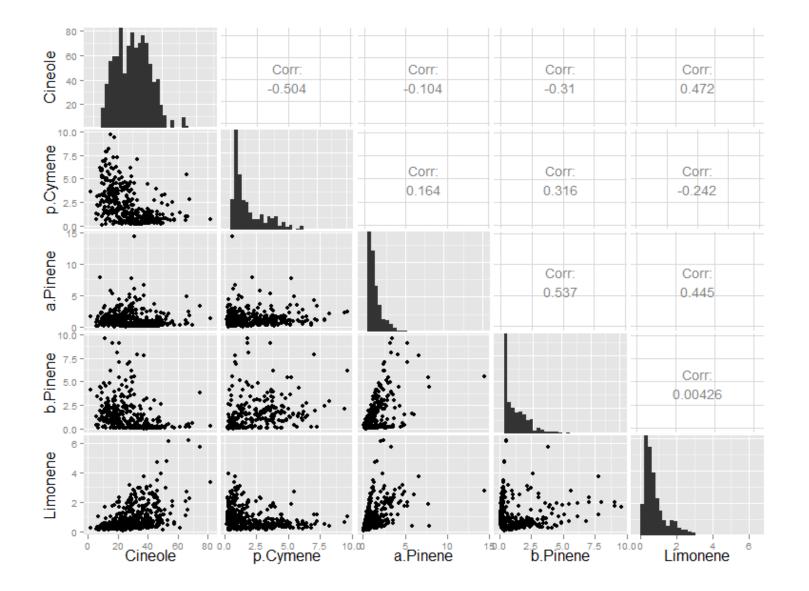


Three main steps for GWAS



GWAS for oil traits in Eucalyptus polybractea





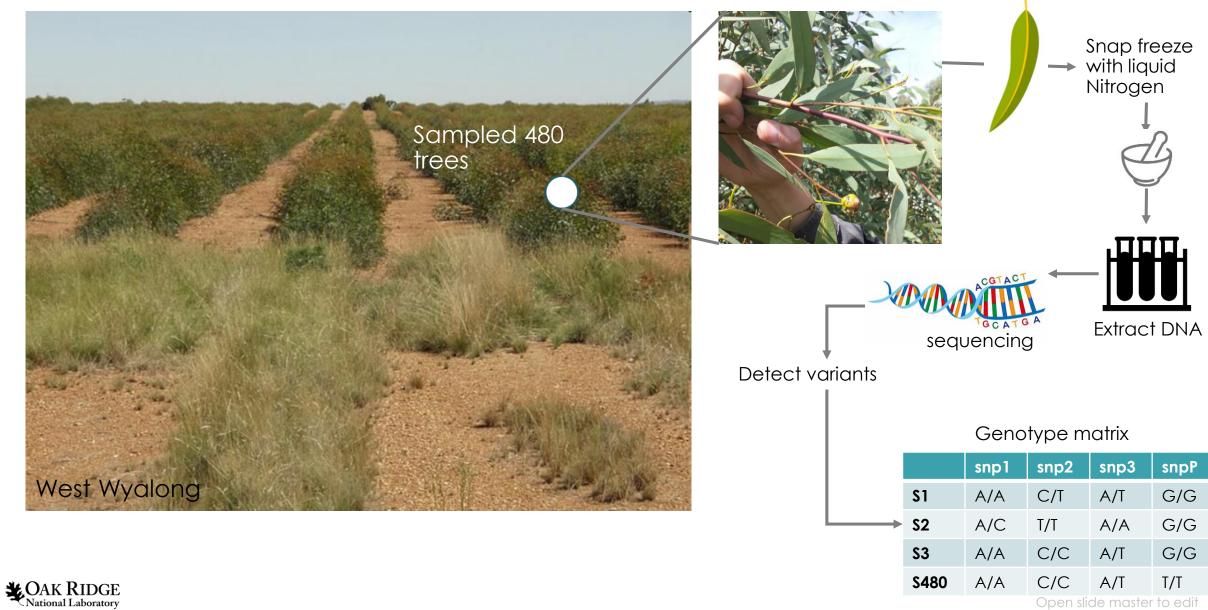
Open slide master to edit

Phenotyping pitfall – environmental variance



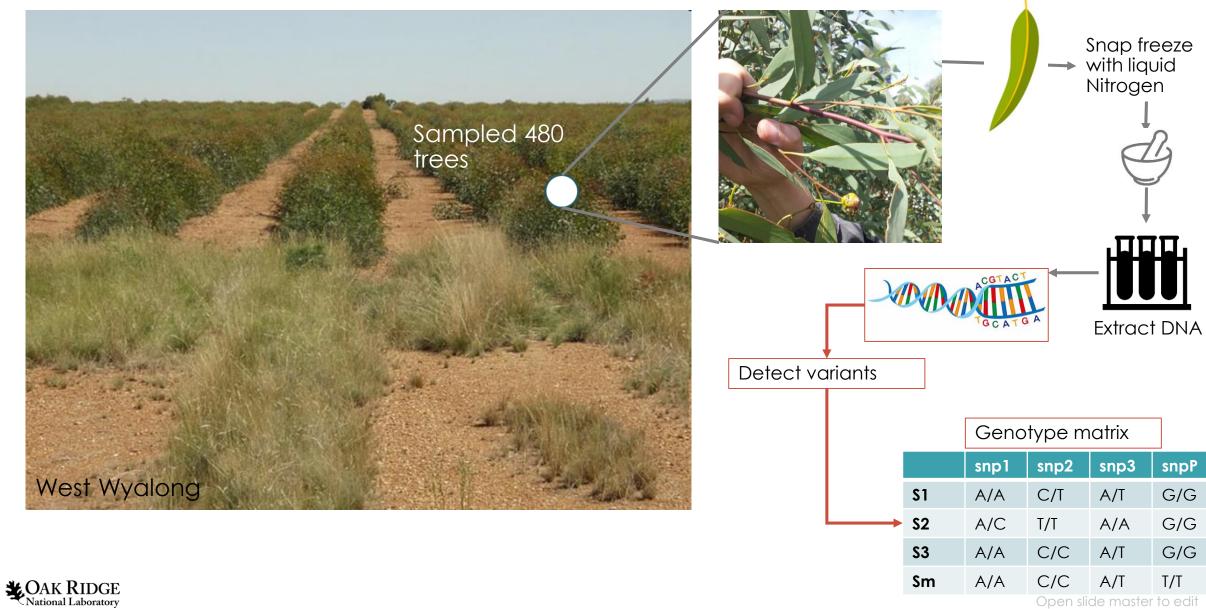
- Minimize environmental variance
- Randomization is necessary to avoid batch effects or environmental trends
- Accuracy is hugely important
- consistency

26

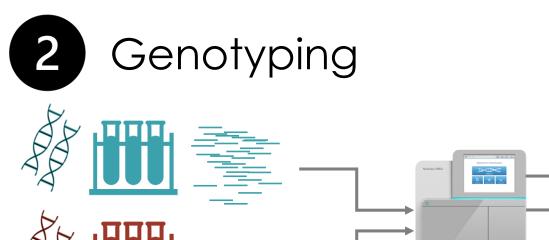


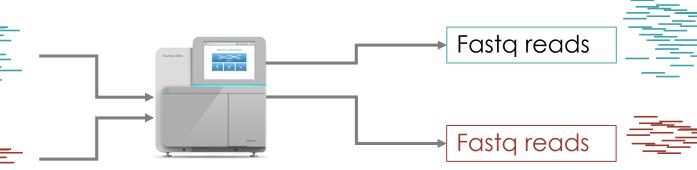
Open slide master to edit

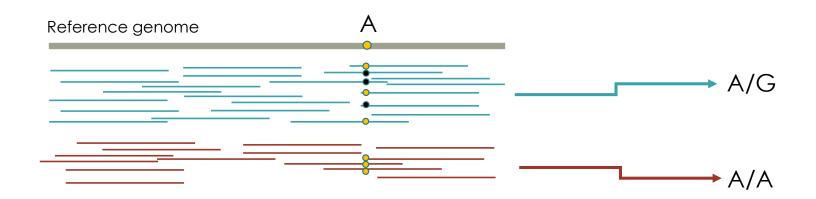
27



Open slide master to edit







Genotyping pitfall: More accessions or more sequencing depth?

N accessions

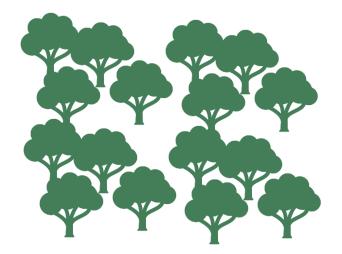
2N accessions

Or...

CAK RIDGE

National Laboratory

- High sequencing depth per sample
- Higher genotype accuracy
- Lower genetic diversity
- Lower statistical power



- low depth per sample
- Lower genotype accuracy
- Higher genetic diversity
- Higher statistical power

metabolite matrix

	M1	M2	M3	Mn
S1	0	300	12	65
S2	20	500	90	0
S3	2	50	250	0
S480	120	100	15	0

Genotype matrix

	snp1	snp2	snp3	snpP
S 1	A/A	C/T	A/T	G/G
S2	A/C	T/T	A/A	G/G
S3	A/A	C/C	A/T	G/G
S480	A/A	C/C	A/T	T/T
	Ļ	Ļ	ļ	Ļ
	snp1	snp2	snp3	snpP

	snp1	snp2	snp3	snpP
S 1	0	1	1	0
S2	1	2	0	0
S 3	0	0	1	0
S480	0	0	1	2

31

metabolite matrix

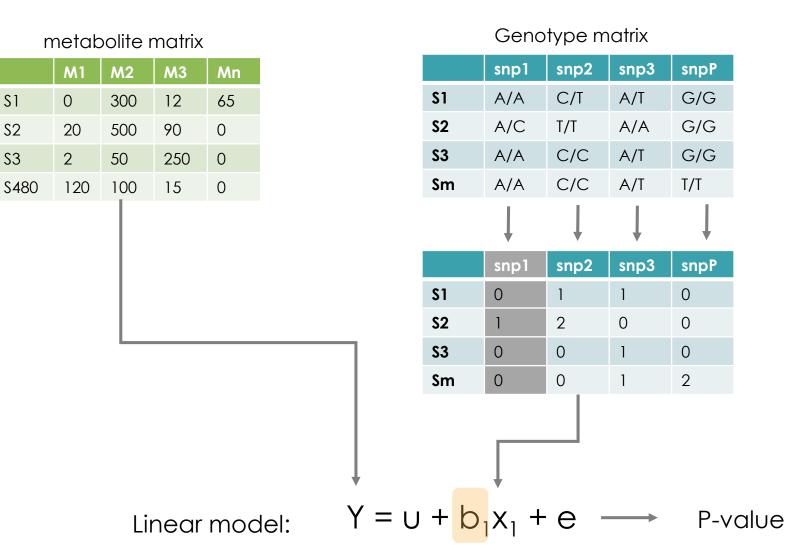
	M1	M2	M3	Mn
S1	0	300	12	65
S2	20	500	90	0
S3	2	50	250	0
S480	120	100	15	0

snp2 snp3 snp1 snpP **S1** A/A C/T A/T G/G **S2** A/C A/A G/G T/T C/C G/G **S3** A/A A/T A/A C/C A/T Sm T/T snp2 snp3 snpP snp1 0 **S1** 0 1 1 **S2** 1 2 0 0 **S**3 0 0 0 1 0 Sm 0 2 1

Genotype matrix

Filtering:

- Remove rare SNPs
- Remove SNPs that are likely to be erroneous

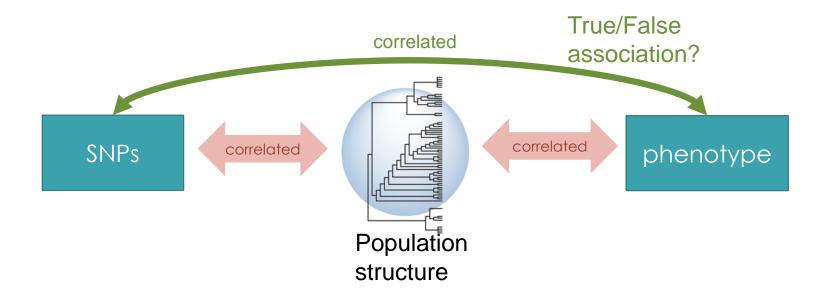


Problem with our model

 $Y = u + b_i x_i + e$

Population structure

 Samples are often genetically related to each other (even if you think they aren't!), which means they are not independent and can cause false positive SNP associations.

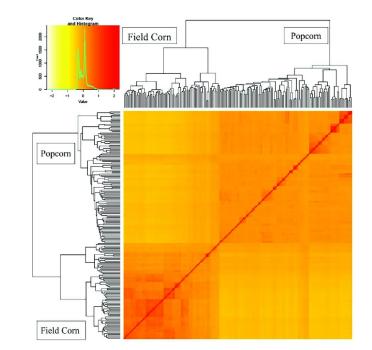


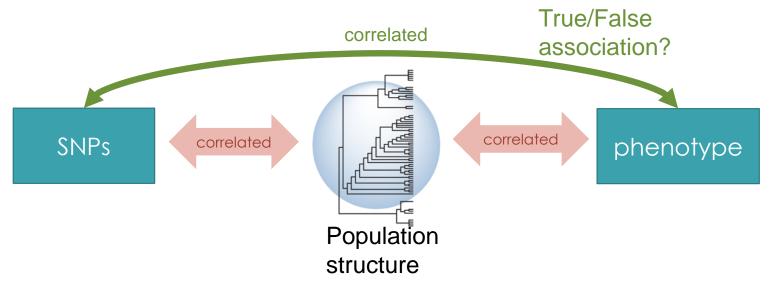
Problem with our model

 $Y = u + b_i x_i + k + e$

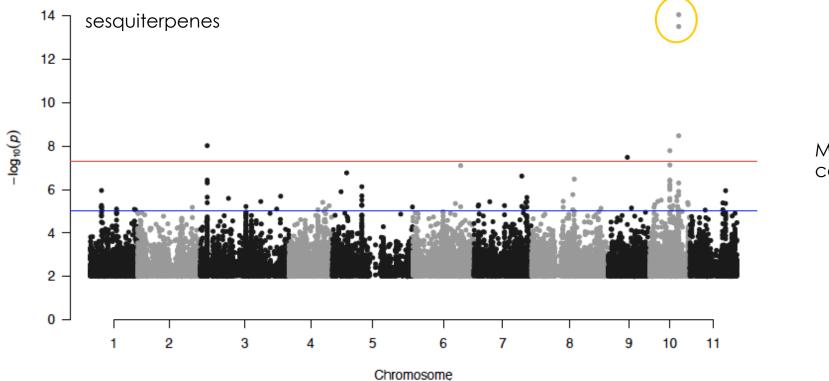
Population structure

 Samples are often genetically related to each other (even if you think they aren't!), which means they are not independent and can cause false positive SNP associations.



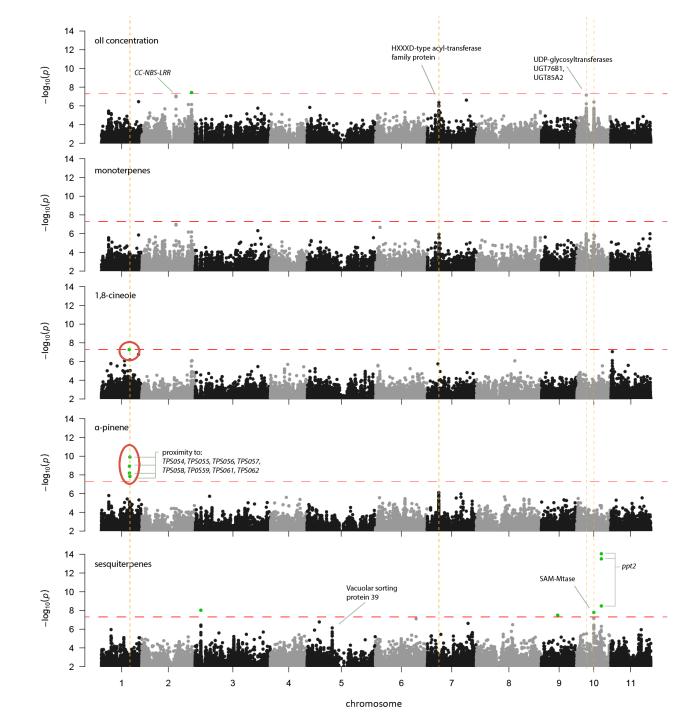


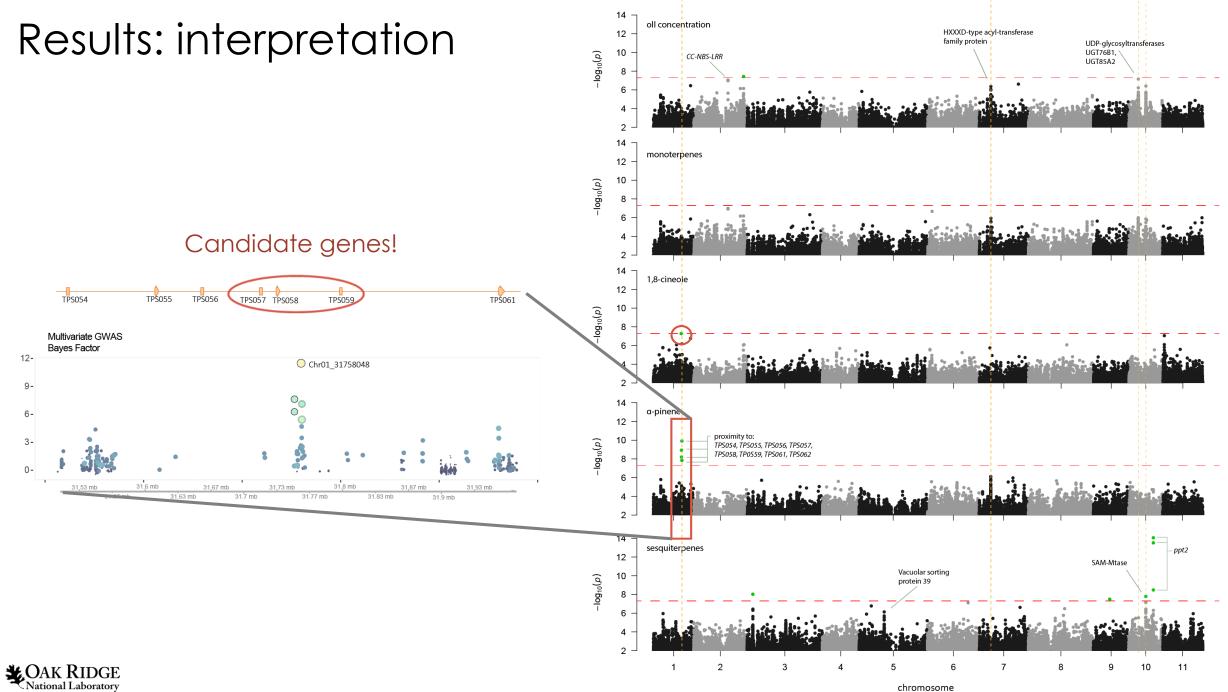
Results: Manhattan plot



Multiple testing correction threshold

Results



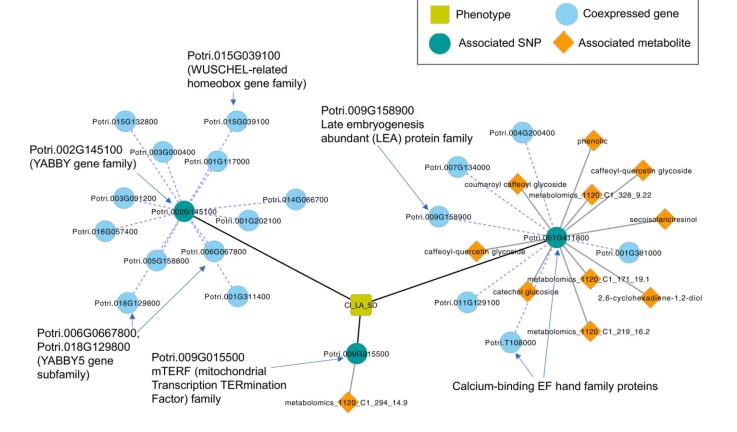


39

chromosome

Next Steps

- Validation !!
- Multi-omics integration
- Try other models
- Build the story



Thank You

- Carsten Kulheim
- William Foley
- Carlos Bustos
- Amanda Padovan
- Daniel Jacobson
- Jerry Tuskan

