<table>
<thead>
<tr>
<th>Question</th>
<th>Asker</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hey Sara Chat seems to be disabled?</td>
<td>Robbie Shaw</td>
<td>live answered</td>
</tr>
<tr>
<td>chat is disable...Happy st.Pats day</td>
<td>James Powers</td>
<td>live answered</td>
</tr>
<tr>
<td>Are you continuing to follow those seedlings or were they discarded?</td>
<td>Jeffrey Strathern</td>
<td>live answered</td>
</tr>
<tr>
<td>how many times do chestnuts come up from the roots before they die of</td>
<td>Russel Boyer</td>
<td>how many times do chestnuts come up from the roots before they die of</td>
</tr>
<tr>
<td>how many times do chestnuts come up from the roots before they die of</td>
<td>Russel Boyer</td>
<td>That's a great question, Russel! We don't know, actually. It appears that as long as a given tree gets enough other resources like water and food, root system appears to be able to happen forever. It appears as though chestnuts create new roots whenever they reseeding, thereby increasing their capacity to uptake nutrients and water. If other resources are limited, however, then the sprout system is exhausted and dies. This happens often in areas where the canopy is consistently closed, in areas of continuous drought, and/or where deer continuously eat new growth of sprouts.</td>
</tr>
<tr>
<td>okay</td>
<td>Russel Boyer</td>
<td>okay</td>
</tr>
<tr>
<td>Is anything known about genetics of oxalic acid tolerance in chestnut (or syntenic species?)? Where might this trait map relative to Chr positions of known chestnut (or other syntenic) R genes?</td>
<td>Ron Laby</td>
<td>live answered</td>
</tr>
<tr>
<td>Question</td>
<td>Asker</td>
<td>Answer</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Could this be done with stem samples and if so would you expect different results?</td>
<td>Martin Cipollini</td>
<td>live answered</td>
</tr>
<tr>
<td>In my area it seemed that chinquapin survived longer than the chestnuts, well into the 1970's and there are more of them still around and still flowering. Could the oxalic acid tolerance contribute to that (if it is truly so)? And could it indicate a lot more to blight resistance than oxalic acid detoxification?</td>
<td>Carl Absher</td>
<td>live answered</td>
</tr>
<tr>
<td>Be careful with interpreting results because there was only one leaf/tree used. In the future, I suggest using multiple leaves/tree if you want to make conclusions about trees</td>
<td>Steven Jeffers</td>
<td>live answered</td>
</tr>
<tr>
<td>Oxalic acid used to control varroat mites in honeybees hives.</td>
<td>Marty Jesse</td>
<td>live answered</td>
</tr>
<tr>
<td>Can you comment on the AM1 versus AM2 parent? They seemed rather different including AM2 being better than some of the families</td>
<td>Jeffrey Strathern</td>
<td>live answered</td>
</tr>
<tr>
<td>You mentioned calcium levels helped. Could this play a difference. I have very high calcium levels in my soil.</td>
<td>Paul Anderson</td>
<td>live answered</td>
</tr>
<tr>
<td>Question</td>
<td>Asker</td>
<td>Answer</td>
</tr>
<tr>
<td>-------------------------------------------------------------------------</td>
<td>--------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>does the straw cap limit the size of the stem to be tested such that only stems with the exact diameter can be used?</td>
<td>Steven Jeffers</td>
<td>live answered</td>
</tr>
<tr>
<td>Can you run tests on a large variety of americans to show a difference.</td>
<td>Paul Anderson</td>
<td></td>
</tr>
<tr>
<td>Any thoughts about if using these small stem assays would be possible on twigs from more established trees already in orchards, or is it likely mostly useful just for young seedlings?</td>
<td>Lindsay Rush</td>
<td></td>
</tr>
<tr>
<td>how many participants?</td>
<td>CHARLES METZ</td>
<td></td>
</tr>
</tbody>
</table>